Inference after variable selection using restricted permutation methods
نویسندگان
چکیده
منابع مشابه
Permutation Methods: A Basis for Exact Inference
The use of permutation methods for exact inference dates back to Fisher in 1935. Since then, the practicality of such methods has increased steadily with computing power. They can now easily be employed in many situations without concern for computing difficulties. We discuss the reasoning behind these methods and describe situations when they are exact and distribution-free. We illustrate thei...
متن کاملVariable selection methods: an introduction
In order to develop regression/classification models, QSAR analysis typically uses molecular descriptors as independent variables. The number of molecular descriptors has hugely increased over time and nowadays thousands of descriptors, able to describe different aspects of a molecule, can be calculated by means of dedicated software. However, when modelling a particular property or biological ...
متن کاملVariable Selection using Correlation and SVC Methods: Applications
Correlation and single variable classifier (SVC) methods are very simple algorithms to select a subset of variables in a dimension reduction problem, which utilize some measures to detect relevancy of a single variable to the target classes without considering the predictor properties to be used. In this paper, along with the description of correlation and single variable classifier ranking met...
متن کاملValidating cluster size inference: random field and permutation methods.
Cluster size tests used in analyses of brain images can have more sensitivity compared to intensity based tests. The random field (RF) theory has been widely used in implementation of such tests, however the behavior of such tests is not well understood, especially when the RF assumptions are in doubt. In this paper, we carried out a simulation study of cluster size tests under varying smoothne...
متن کاملNonstationary cluster-size inference with random field and permutation methods.
Because of their increased sensitivity to spatially extended signals, cluster-size tests are widely used to detect changes and activations in brain images. However, when images are nonstationary, the cluster-size distribution varies depending on local smoothness. Clusters tend to be large in smooth regions, resulting in increased false positives, while in rough regions, clusters tend to be smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Statistics
سال: 2009
ISSN: 0319-5724,1708-945X
DOI: 10.1002/cjs.10039